Multilingual Speech Processing
This Page Intentionally Left Blank
Contents

Contributor Biographies xvii
Foreword xxvii

1 Introduction 1

2 Language Characteristics 5
 Katrin Kirchhoff
 2.1 Languages and Dialects .. 5
 2.2 Linguistic Description and Classification 8
 2.3 Language in Context .. 20
 2.4 Writing Systems .. 22
 2.5 Languages and Speech Technology 30

3 Linguistic Data Resources 33
 Christopher Cieri and Mark Liberman, Victoria Arranz and Khalid Choukri
 3.1 Demands and Challenges of Multilingual Data-Collection Efforts ... 33
 3.2 International Efforts and Cooperation 40
 3.3 Data Collection Efforts in the United States 44
 3.4 Data Collection Efforts in Europe 55
 3.5 Overview Existing Language Resources in Europe 64

4 Multilingual Acoustic Modeling 71
 Tanja Schultz
 4.1 Introduction .. 71
 4.2 Problems and Challenges .. 79
 4.3 Language Independent Sound Inventories and Representations 91
 4.4 Acoustic Model Combination .. 102
 4.5 Insights and Open Problems .. 118
CONTENTS

5 Multilingual Dictionaries 123
Martine Adda-Decker and Lori Lamel
5.1 Introduction 123
5.2 Multilingual Dictionaries 125
5.3 What Is a Word? 129
5.4 Vocabulary Selection 141
5.5 How to Generate Pronunciations 149
5.6 Discussion 166

6 Multilingual Language Modeling 169
Sanjeev P. Khudanpur
6.1 Statistical Language Modeling 169
6.2 Model Estimation for New Domains and Speaking Styles 174
6.3 Crosslingual Comparisons: A Language Modeling Perspective ... 177
6.4 Crosslinguistic Bootstrapping for Language Modeling 193
6.5 Language Models for Truly Multilingual Speech Recognition ... 199
6.6 Discussion and Concluding Remarks 202

7 Multilingual Speech Synthesis 207
Alan W. Black
7.1 Background 208
7.2 Building Voices in New Languages 208
7.3 Database Design 213
7.4 Prosodic Modeling 216
7.5 Lexicon Building 219
7.6 Non-native Spoken Output 230
7.7 Summary 231

8 Automatic Language Identification 233
Jiří Navrátil
8.1 Introduction 234
8.2 Human Language Identification 235
8.3 Databases and Evaluation Methods 240
8.4 The Probabilistic LID Framework 242
8.5 Acoustic Approaches 245
8.6 Phonotactic Modeling 251
8.7 Prosodic LID 262
8.8 LVCSR-Based LID 266
8.9 Trends and Open Problems in LID 268
This Page Intentionally Left Blank
List of Figures

Figure 2.1 The Indo-European language family (extinct languages are not shown). 10
Figure 2.2 The International Phonetic Alphabet (from the International Phonetic Association). 13
Figure 2.3 Example of within-utterance code-switching between French and Moroccan Arabic, from Naït M’Barek and Sankoff (1988). 21
Figure 2.4 Classification of writing systems. 23
Figure 2.5 Representation of the sentence *I come from Hunan* in Chinese Hanzi, with indication of word segmentation. 24
Figure 2.6 Arabic script representation of the sentence *I like to travel to Cairo*, with diacritics (top row) and without (bottom row). 25
Figure 2.7 Japanese Hiragana characters. 26
Figure 2.8 Basic Korean Hangul characters. 27
Figure 3.1 Contract model followed by ELRA. 63
Figure 4.1 Automatic speech recognition (ASR). 72
Figure 4.2 Generation of an observation sequence $O = o_1 o_2 \ldots o_T$ with a three-state left-to-right hidden Markov model. 73
Figure 4.3 Context decision tree for the middle state of a quinphone HMM for phone /k/. 76
Figure 4.4 Multilingual ASR system. 77
Figure 4.5 Consonants (C) to Vowels (V) ratio (in %) and phone-based error rates for nine languages. 86
Figure 4.6 Number of polyphones over context width for nine languages. 87
Figure 4.7 Compactness for nine EU-languages: Word Type (vocabulary) vs. Word Tokens (top) and vs. Grapheme Tokens (bottom). 90
Figure 4.8 Average and range of the share factor for phoneme based and articulatory feature based units over the number of ${\binom{12}{2}}$ and $\binom{5}{1}$ involved languages, respectively, with $k = 1, \ldots, 12$ and $l = 1, \ldots, 5$. 98
Figure 4.9 Portuguese polyphone coverage by nine languages. 101
Figure 4.10 Acoustic model combination ML-sep, ML-mix, ML-tag (from left to right).

Figure 4.11 Entropy gain over number of subpolyphones for a five-lingual system.

Figure 4.12 Classification accuracy of articulatory feature detectors from five languages on English test data.

Figure 5.1 Language-dependent resources for transcription systems.

Figure 5.2 About 13% of French’s entries are imported from other languages, mainly English, Italian, and Germanic (after Walter, 1997).

Figure 5.3 Language independent processing steps for pronunciation dictionary generation.

Figure 5.4 Sample word lists obtained using different text normalizations, with standard base-form pronunciations.

Figure 5.5 Number of distinct (left) and total number (right) of words in the training data for different normalization combination V_i.

Figure 5.6 OOV rates for different normalization versions V_i on the training data using 64,000 word lists.

Figure 5.7 Number of words as a function of length (in characters) for German, English, and French from 300 million words running texts in each language. Number of distinct entries in the full lexicon (top). Number of occurrences in the corpus (bottom).

Figure 5.8 Can a word be decompounded after letter k.

Figure 5.9 Goëlette profile for decomposition: branching factor as a function of length k for a simple word (left) and a three-word based compound (right).

Figure 5.10 Hierarchical representation for a complex decomposition.

Figure 5.11 OOV rates on training and dev_96 data for different normalization versions V_i and 64,000 most frequently words from 40 million training data highlighting the importance of training epoch.

Figure 5.12 OOV rates for normalization versions V_0, V_5, and V_7 on dev_96 text data, using 64,000 word lists derived from different training text sets.

Figure 5.13 Word list comparisons between pairs of languages. The number of shared words is shown as a function of word list size (including for each language its N most frequent items).

Figure 5.14 Pronunciation dictionary development for ASR system.

Figure 5.15 Pronunciation generation tool.

Figure 5.16 Example of letter-to-sound rules standard French, German, and English, and related exception. Rule precedence corresponds to listed order; ctx specifies letter contexts.

Figure 5.17 Examples of alternate valid pronunciations for American English and French.
LIST OF FIGURES

Figure 5.18 Two example spectrograms of the word *coupon*: (left) /kjupɒn/ and (right) /kupɒn/. The grid 100 ms by 1 kHz.

Figure 5.19 An acoustic phone like segment is temporally modeled as a sequence of three states, each state being acoustically modeled by a weighted sum of Gaussian densities.

Figure 5.20 Impact on acoustic/temporal modeling depending on the choice of one or two symbols for affricates or diphthongs.

Figure 6.1 The classical communication channel model of automatic speech recognition.

Figure 6.2 Illustration of multiple back-off paths implicitly followed in a factored language model to evaluate the probability $P(w_n|r_{n-1}, e_{n-1}, r_{n-2}, e_{n-2})$ of (6.10).

Figure 6.3 Dynamic adaptation of language models using contemporaneous data from another language.

Figure 8.1 Levels of signal abstraction by acoustic analysis along with components of information.

Figure 8.2 Human language identification rates for individual languages in the first (dark) and last (gray) quarters of the experiment, averaged over all participants (Muthusamy et al., 1994b).

Figure 8.3 An illustrative example of an HMM structure.

Figure 8.4 Example of a binary decision tree.

Figure 8.5 Phonotactic architecture with a single mono- or multilingual phone decoder.

Figure 8.6 Phonotactic architecture with multiple phone decoders.

Figure 8.7 Illustration of modeling cross-stream dependencies for a specific token.

Figure 9.1 Phonetic confusions for native English and native Japanese speakers, full phone set (top), specific phones (bottom).

Figure 10.1 Stochastic source-channel speech translation system.

Figure 10.2 Dynamic grammar acquisition as by-product of clarification dialogs using the GSG system on an e-mail client application.

Figure 10.3 Phrase alignment as sentence splitting.

Figure 10.4 The concept of N-grams (a) in sequences (b) in trees.

Figure 10.5 An alignment between an English phrase and its corresponding IF representation.

Figure 10.6 Translation quality with and without ASR score (acoustic model and source language model scores).

Figure 10.7 Block diagram of the ATR S2ST system.

Figure 10.8 Contextual splitting and temporal splitting.

Figure 10.9 An overview of the machine translation system developed in the C-cube project.
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.10</td>
<td>Examples of Hierarchical Phrase Alignment.</td>
<td>355</td>
</tr>
<tr>
<td>10.11</td>
<td>Examples of transfer rules in which the constituent boundary is “at.”</td>
<td>356</td>
</tr>
<tr>
<td>10.12</td>
<td>Example of TDMT transfer process.</td>
<td>357</td>
</tr>
<tr>
<td>10.13</td>
<td>Example of transfer rule generation.</td>
<td>358</td>
</tr>
<tr>
<td>10.14</td>
<td>Example of generated rules from the sentence “The bus leaves Kyoto at 11 a.m.”</td>
<td>360</td>
</tr>
<tr>
<td>10.15</td>
<td>Example of word alignment.</td>
<td>361</td>
</tr>
<tr>
<td>10.16</td>
<td>Example-based decoding.</td>
<td>362</td>
</tr>
<tr>
<td>10.17</td>
<td>A block diagram of a TTS module.</td>
<td>367</td>
</tr>
<tr>
<td>10.18</td>
<td>Data-collection environment of MAD.</td>
<td>375</td>
</tr>
<tr>
<td>10.19</td>
<td>The result of an evaluation experiment for naturalness between several TTS products. The horizontal bars at the top, middle, and bottom of the boxes indicate 75%, 50%, and 25% quartiles. Mean values are indicated by “x” marks.</td>
<td>383</td>
</tr>
<tr>
<td>10.20</td>
<td>Diagram of translation paired comparison method.</td>
<td>385</td>
</tr>
<tr>
<td>10.21</td>
<td>Procedure of comparison by bilingual evaluator.</td>
<td>386</td>
</tr>
<tr>
<td>10.22</td>
<td>Evaluation result with the translation paired comparison method.</td>
<td>388</td>
</tr>
<tr>
<td>10.23</td>
<td>Procedure of the automatic evaluation method.</td>
<td>388</td>
</tr>
<tr>
<td>10.24</td>
<td>Evaluation results in real environments.</td>
<td>393</td>
</tr>
<tr>
<td>11.1</td>
<td>The ISIS architecture.</td>
<td>415</td>
</tr>
<tr>
<td>11.2</td>
<td>Screen shot of the client that provides options for language selection and input mode selection (text or voice). Should “Text Input” be selected, a text box will appear.</td>
<td>416</td>
</tr>
<tr>
<td>11.3</td>
<td>Example of an XML message produced by the NLU server object.</td>
<td>416</td>
</tr>
<tr>
<td>11.4</td>
<td>Screen shot of the ISIS client object presenting information in response to the user’s query “Do you have the real-time quotes of Arte?”</td>
<td>424</td>
</tr>
<tr>
<td>11.5</td>
<td>Multiagent communication in ISIS. The messages communicated between the agents and the dialog manager server object are in XML format and wrapped with indicator tags.</td>
<td>427</td>
</tr>
<tr>
<td>11.6</td>
<td>The “Notify” icon indicates the arrival of a notification message.</td>
<td>429</td>
</tr>
<tr>
<td>11.7</td>
<td>The presence of both the “Notify” and the “Buy/Sell” icons indicate that there are pending notification message(s) and buy/sell reminders in the queue.</td>
<td>430</td>
</tr>
<tr>
<td>11.8</td>
<td>Structures and mechanisms supporting interruptions in ISIS. Online interaction (OI) and offline delegation (OD) are managed as separate dialog threads.</td>
<td>431</td>
</tr>
<tr>
<td>11.9</td>
<td>The AOPA software platform supports universal accessibility.</td>
<td>437</td>
</tr>
<tr>
<td>11.10</td>
<td>Browsing Web content by voice (see www.vxml.org).</td>
<td>438</td>
</tr>
<tr>
<td>11.11</td>
<td>Architecture of the bilingual CU voice browser.</td>
<td>442</td>
</tr>
</tbody>
</table>
List of Tables

Table 2.1 Distribution of the world’s languages by geographical origin, percentage of the world’s languages, and percentage of native speakers. Data from Gordon (2005).

Table 2.2 The twenty most widely spoken languages in the world according to the number of first-language speakers. Data from Gordon (2005).

Table 2.3 Illustration of derived forms in Arabic for the roots \texttt{kth} (write) and \texttt{drt} (study).

Table 2.4 Korean speech levels: forms of the infinitive verb \texttt{gada} (go).

Table 3.1 European research programs funding speech and language technology.

Table 4.1 Writing systems and number of graphemes for twelve languages.

Table 4.2 Out-of-vocabulary rates for ten languages.

Table 4.3 Global unit set for twelve languages.

Table 4.4 Global feature unit set for five languages.

Table 4.5 Triphone coverage matrix for ten GlobalPhone languages; two numbers are given for each matrix entry \((i,j)\), meaning that language \(i\) is covered by language \(j\) with triphone types (upper number) and triphone tokens (lower number).

Table 4.6 Comparison between monolingual and multilingual articulatory feature detectors.

Table 4.7 Word error rates for English when decoding with articulatory feature detectors as additional stream.

Table 4.8 Phone versus grapheme-based speech recognition [word error rates] for five languages.

Table 5.1 For each version \(V_i\) \((i=0,\ldots,7)\) of normalized text, the elementary normalization steps \(N_j\) \((j=0,\ldots,6)\) are indicated by 1 in the corresponding column.

Table 5.2 Example words with ambiguous decompositions.
Table 5.3 Given a word start \(W_{beg}(k) \) of length \(k \), the number of character successors \(#S_e(k) \) generally tends toward zero with \(k \). A sudden increase of \(#S_e(k) \) indicates a boundary due to compounding. \(#W_{end}(k) \) indicates the number of words in the vocabulary sharing the same word start. 139

Table 5.4 Examples of decomposition rules, including composita with imported English and French items; the number of occurrences of the decomposed items is given in parentheses. 140

Table 5.5 Lexical coverage and complementary OOV rates measured for different-size vocabularies on a 300-million word German text corpus. Measures are given with and without decomposition. The last two columns indicate the absolute and relative gains in OOV reduction rates. 141

Table 5.6 Some example rules to strip and add affixes used by a pronunciation generation tool. Affix types are P (prefix) and S (suffix). 155

Table 5.7 Pronunciation counts for inflected forms of the word \textit{interest} in 150 hours of broadcast news (BN) data and 300 hours of conversational telephone speech (CTS). 165

Table 6.1 Czech is a free-word-order language, as illustrated by this set of sentences from Kuboš and Plátek (1994). 179

Table 6.2 Illustration of inflected forms in Czech for the underlying noun \textit{žena} (woman). 180

Table 6.3 Illustration of derived forms in Arabic for the roots \textit{ktb} (write) and \textit{drs} (study) from Kirchoff et al. (2002a). 181

Table 6.4 Illustration of an agglutinated form in Inuktitut for the root word \textit{tusaa} (hear). 182

Table 6.5 Typical vocabulary growth and rate of out-of-vocabulary words for various languages. 183

Table 6.6 The TDT-4 corpus covers news in three languages (Strassel and Glenn, 2003). 194

Table 8.1 Language identification accuracy rates over all test persons for test sections A (full speech), B (syllables), and C (prosody). 238

Table 8.2 Some acoustic LID systems and their performance rates. 250

Table 8.3 Examples of phonotactic LID systems and their recognition rates. 263

Table 8.4 Some prosodic components and their recognition rates. 265

Table 8.5 Some LVCSR LID components and their error rates. 267

Table 8.6 Comparison of basic LID approaches from an application development aspect. 269

Table 9.1 Targets for annotation with examples. 280
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2</td>
<td>Speaking rate and pause distribution statistics for native and non-native speakers of English in spontaneous versus read speech. Average phone duration and pause duration are measured in seconds. The pause-word ratio is the number of pauses inserted per word in speech.</td>
</tr>
<tr>
<td>9.3</td>
<td>Frequent trigrams in native and non-native speech.</td>
</tr>
<tr>
<td>9.4</td>
<td>WERs for accented speech using adapted dictionaries and weighted MLLR; baseline results on native speech are 11% for German and 12.3% for French.</td>
</tr>
<tr>
<td>10.1</td>
<td>Corpus statistics for the NESPOLE! training and test set.</td>
</tr>
<tr>
<td>10.2</td>
<td>Scores of the translations generated by systems IL, SIL, and SMT; the values are percentages and averages of four independent graders.</td>
</tr>
<tr>
<td>10.3</td>
<td>Training (test in parentheses) corpora.</td>
</tr>
<tr>
<td>10.4</td>
<td>NIST scores for translation from Chinese to Spanish.</td>
</tr>
<tr>
<td>10.5</td>
<td>Results for automatic disfluency removal on the English Verbmobile (EVM) and the Chinese CallHome (CCH) corpora.</td>
</tr>
<tr>
<td>10.6</td>
<td>Optimal density and acoustic score weight based on utterance length.</td>
</tr>
<tr>
<td>10.7</td>
<td>Optimal density and acoustic score weight based on utterance length when using acoustic and source language model scores.</td>
</tr>
<tr>
<td>10.8</td>
<td>Summary of translation results for tight coupling between recognition and translation.</td>
</tr>
<tr>
<td>10.9</td>
<td>Size of BTEC and SLDB.</td>
</tr>
<tr>
<td>10.10</td>
<td>Characteristics of bilingual and monolingual travel conversation databases.</td>
</tr>
<tr>
<td>10.11</td>
<td>Statistics of MAD corpora.</td>
</tr>
<tr>
<td>10.12</td>
<td>Phoneme units for Japanese ASR.</td>
</tr>
<tr>
<td>10.13</td>
<td>Perplexity for Japanese BTEC test set 01.</td>
</tr>
<tr>
<td>10.15</td>
<td>Word accuracy rates [%] for two different language model combinations (the MDL-SSS acoustic model).</td>
</tr>
<tr>
<td>10.16</td>
<td>Acoustic model performance comparison.</td>
</tr>
<tr>
<td>10.17</td>
<td>Language model performance comparison.</td>
</tr>
<tr>
<td>10.18</td>
<td>Subword units for Chinese ASR system.</td>
</tr>
<tr>
<td>10.19</td>
<td>Token coverage rates of different subword units.</td>
</tr>
<tr>
<td>10.20</td>
<td>Chinese character based recognition performance.</td>
</tr>
<tr>
<td>10.21</td>
<td>Translation quality of four systems for BTEC.</td>
</tr>
<tr>
<td>10.22</td>
<td>Translation performance.</td>
</tr>
<tr>
<td>10.23</td>
<td>Translation performance for BTEC with/without duplications.</td>
</tr>
<tr>
<td>10.24</td>
<td>Translation performance of test set without duplications.</td>
</tr>
<tr>
<td>Table 11.1</td>
<td>An example dialog in the stocks domain illustrating the capabilities of a state-of-the-art spoken dialog system (source: www.speechworks.com).</td>
</tr>
<tr>
<td>Table 11.2</td>
<td>An Example dialog from the CU FOREX hotline (Meng et al., 2000).</td>
</tr>
<tr>
<td>Table 11.3</td>
<td>Example rejection dialog in the ISIS system.</td>
</tr>
<tr>
<td>Table 11.4</td>
<td>An example dialog from the ISIS system.</td>
</tr>
<tr>
<td>Table 11.5</td>
<td>Example illustrating the automatic acquisition of a new stock name in ISIS through a spoken dialog between the user and the system.</td>
</tr>
<tr>
<td>Table 11.6</td>
<td>Example dialog illustrating the interruption of an online interaction dialog by an offline delegation alert.</td>
</tr>
<tr>
<td>Table 11.7</td>
<td>Example task list prepared by a participating subject.</td>
</tr>
<tr>
<td>Table 11.8</td>
<td>A human-computer dialog in the weather domain (C: computer, H: human).</td>
</tr>
<tr>
<td>Table 11.9</td>
<td>The VXML document that specifies the English dialog in Table 11.8 (explanations are boldface).</td>
</tr>
<tr>
<td>Table 11.10</td>
<td>A bilingual human-computer dialog implemented with VXML in the CU weather system.</td>
</tr>
<tr>
<td>Table 11.11</td>
<td>VXML document that specifies the bilingual CU weather dialog in Table 11.10 (explanations are boldface).</td>
</tr>
</tbody>
</table>
Contributor Biographies

Dr. Tanja Schultz received her Ph.D. and Masters in Computer Science from University Karlsruhe, Germany in 2000 and 1995, respectively, and earned a German Masters in Mathematics, Sports, and Education Science from the University of Heidelberg, Germany in 1990. She joined Carnegie Mellon University in 2000 and is a faculty member of the Language Technologies Institute as an Assistant Research Professor. Her research activities center around human-machine and human-human interaction. With a particular area of expertise in multilingual approaches, she directs research on portability of speech and language processing systems to many different languages. In 2001 Tanja Schultz was awarded with the FZI price for her outstanding Ph.D. thesis on language independent and language adaptive speech recognition. In 2002 she received the Allen Newell Medal for Research Excellence from Carnegie Mellon for her contribution to Speech-to-Speech Translation and the ISCA best paper award for her publication on language independent acoustic modeling. She is an author of more than 80 articles published in books, journals, and proceedings, and a member of the IEEE Computer Society, the European Language Resource Association, and the Society of Computer Science (GI) in Germany. She served as Associate Editor for IEEE Transactions and is currently on the Editorial Board of the Speech Communication journal.

Dr. Katrin Kirchhoff studied Linguistics and Computer Science at the Universities of Bielefeld, Germany, and Edinburgh, United Kingdom, and was a visiting researcher at the International Computer Science Institute, Berkeley, California. After obtaining her Ph.D. in Computer Science from the University of Bielefeld in 1999, she joined the University of
Washington, where she is currently a Research Assistant Professor in Electrical Engineering. Her research interests are in automatic speech recognition, language identification, statistical natural language processing, human-computer interfaces, and machine translation. Her work emphasizes novel approaches to acoustic-phonetic and language modeling and their application to multilingual contexts. She currently serves on the Editorial Board of the Speech Communication journal.

Dr. Christopher Cieri is the Executive Director of the Linguistic Data Consortium, where he has overseen dozens of data collection and annotation projects that have generated multilingual speech and text corpora. His Ph.D. is in Linguistics from the University of Pennsylvania. His research interests revolve around corpus based language description especially in phonetics, phonology, and morphology as they interact with nonlinguistic phenomena as in language contact and studies of linguistic variation.

Dr. Mark Liberman is Trustee Professor of Phonetics in Linguistics at the University of Pennsylvania, where he is also Director of the Linguistic Data Consortium, Co-Director of the Institute for Research in Cognitive Science, and Faculty Master of Ware College House. His Ph.D. is from the Massachusetts Institute of Technology in 1975, and he worked from 1975 to 1990 at AT&T Bell Laboratories, where he was head of the Linguistics Research Department.

Dr. Khalid Choukri obtained an Electrical Engineering degree (1983) from Ecole Nationale de l’aviation civile (ENAC), and Masters Degree (1984) and doctoral degrees (1987) in Computer Sciences and Signal Processing at the Ecole Nationale Supérieure des Télécommunications (ENST) in Paris. He was a research scientist at the Signal Department of ENST, involved in Man-Machine Interaction. He has also consulted for several French companies, such as Thomson, on various speech system projects and was involved in SAM, ARS, etc. In 1989, he joined CAP GEMINI INNOVATION, R&D center of CAP SOGETI to work as the team leader on speech processing, oral dialogs and neural networks. He managed several ESPRIT projects, such as SPRINT, and was involved in many others, such as SUNDIAL. He then moved to ACSYS in September 1992 to take on the position of Speech Technologies Manager. Since 1995, he has been the Executive Director of the European Language...